Сортировка слиянием связанного списка

Недавно я освежил некоторые основы и обнаружил, что сортировка слиянием связанного списка является довольно хорошей задачей. Если у вас есть хорошая реализация, покажите ее здесь.

Ответов (19)

Интересно, почему это должно быть большой проблемой, как здесь сказано, вот простая реализация на Java без каких-либо "хитрых уловок".

//The main function
public static Node merge_sort(Node head) 
{
    if(head == null || head.next == null) 
        return head;
        
    Node middle = getMiddle(head);      //get the middle of the list
    Node left_head = head;
    Node right_head = middle.next; 
    middle.next = null;             //split the list into two halfs

    return merge(merge_sort(left_head), merge_sort(right_head));  //recurse on that
}

//Merge subroutine to merge two sorted lists
public static Node merge(Node a, Node b)
{
    Node dummyHead = new Node();
    for(Node current  = dummyHead; a != null && b != null; current = current.next;)
    {
        if(a.data <= b.data) 
        {
            current.next = a; 
            a = a.next; 
        }
        else
        { 
            current.next = b;
            b = b.next; 
        }
        
    }
    dummyHead.next = (a == null) ? b : a;
    return dummyHead.next;
}

//Finding the middle element of the list for splitting
public static Node getMiddle(Node head)
{
    if(head == null) 
        return head;
    
    Node slow = head, fast = head;
    
    while(fast.next != null && fast.next.next != null)
    {
        slow = slow.next;
        fast = fast.next.next;
    }
    return slow;
}

Вот моя реализация «сортировки слиянием списков» Кнута (алгоритм 5.2.4L из тома 3 TAOCP, 2-е изд.). Я добавлю несколько комментариев в конце, но вот резюме:

При случайном вводе он работает немного быстрее, чем код Саймона Тэтэма (см. Нерекурсивный ответ Дэйва Гэмбла со ссылкой), но немного медленнее, чем рекурсивный код Дэйва Гэмбла. Это труднее понять, чем то и другое. По крайней мере, в моей реализации требуется, чтобы каждый элемент имел ДВА указателя на элементы. (Альтернативой может быть один указатель и логический флаг.) Так что, вероятно, это бесполезный подход. Однако одним отличительным моментом является то, что он выполняется очень быстро, если входные данные содержат длинные отрезки, которые уже отсортированы.

element *knuthsort(element *list)
{ /* This is my attempt at implementing Knuth's Algorithm 5.2.4L "List merge sort"
     from Vol.3 of TAOCP, 2nd ed. */
  element *p, *pnext, *q, *qnext, head1, head2, *s, *t;
  if(!list) return NULL;

L1: /* This is the clever L1 from exercise 12, p.167, solution p.647. */
  head1.next=list;
  t=&head2;
  for(p=list, pnext=p->next; pnext; p=pnext, pnext=p->next) {
    if( cmp(p,pnext) > 0 ) { t->next=NULL; t->spare=pnext; t=p; }
  }
  t->next=NULL; t->spare=NULL; p->spare=NULL;
  head2.next=head2.spare;

L2: /* begin a new pass: */
  t=&head2;
  q=t->next;
  if(!q) return head1.next;
  s=&head1;
  p=s->next;

L3: /* compare: */
  if( cmp(p,q) > 0 ) goto L6;
L4: /* add p onto the current end, s: */
  if(s->next) s->next=p; else s->spare=p;
  s=p;
  if(p->next) { p=p->next; goto L3; } 
  else p=p->spare;
L5: /* complete the sublist by adding q and all its successors: */
  s->next=q; s=t;
  for(qnext=q->next; qnext; q=qnext, qnext=q->next);
  t=q; q=q->spare;
  goto L8;
L6: /* add q onto the current end, s: */
  if(s->next) s->next=q; else s->spare=q;
  s=q;
  if(q->next) { q=q->next; goto L3; } 
  else q=q->spare;
L7: /* complete the sublist by adding p and all its successors: */
  s->next=p;
  s=t;
  for(pnext=p->next; pnext; p=pnext, pnext=p->next);
  t=p; p=p->spare;
L8: /* is this end of the pass? */
  if(q) goto L3;
  if(s->next) s->next=p; else s->spare=p;
  t->next=NULL; t->spare=NULL;
  goto L2;
}

Вот альтернативная рекурсивная версия. При этом не нужно перемещаться по списку, чтобы разделить его: мы предоставляем указатель на элемент заголовка (который не является частью сортировки) и длину, а рекурсивная функция возвращает указатель на конец отсортированного списка.

element* mergesort(element *head,long lengtho)
{ 
  long count1=(lengtho/2), count2=(lengtho-count1);
  element *next1,*next2,*tail1,*tail2,*tail;
  if (lengtho<=1) return head->next;  /* Trivial case. */

  tail1 = mergesort(head,count1);
  tail2 = mergesort(tail1,count2);
  tail=head;
  next1 = head->next;
  next2 = tail1->next;
  tail1->next = tail2->next; /* in case this ends up as the tail */
  while (1) {
    if(cmp(next1,next2)<=0) {
      tail->next=next1; tail=next1;
      if(--count1==0) { tail->next=next2; return tail2; }
      next1=next1->next;
    } else {
      tail->next=next2; tail=next2;
      if(--count2==0) { tail->next=next1; return tail1; }
      next2=next2->next;
    }
  }
}

В mono eglib есть нерекурсивная сортировка слиянием связанных списков .

Основная идея состоит в том, что цикл управления для различных слияний параллелен побитовому приращению двоичного целого числа. Существует O (n) слияний, чтобы «вставить» n узлов в дерево слияния, и ранг этих слияний соответствует двоичной цифре, которая увеличивается. Используя эту аналогию, только O (log n) узлов дерева слияния необходимо материализовать во временный массив хранения.

Я был одержим оптимизацией беспорядка для этого алгоритма, и вот что я наконец-то понял. Много другого кода в Интернете и StackOverflow ужасно плохи. Есть люди, пытающиеся получить среднюю точку списка, выполняя рекурсию, имея несколько циклов для оставшихся узлов, поддерживая счет тонны вещей - ВСЕ из них не нужно. MergeSort естественно подходит для связанного списка, и алгоритм может быть красивым и компактным, но добраться до этого состояния нетривиально.

Насколько мне известно, приведенный ниже код поддерживает минимальное количество переменных и имеет минимальное количество логических шагов, необходимых для алгоритма (то есть без того, чтобы код был неработоспособным / нечитаемым). Однако я не пытался минимизировать LOC и оставил столько пробелов, сколько необходимо для удобства чтения. Я протестировал этот код с помощью довольно строгих модульных тестов.

Обратите внимание, что этот ответ сочетает в себе несколько методов из другого ответа https://answacode.com/a/3032462/207661 . Хотя код написан на C#, преобразование в C++, Java и т. Д. Должно быть тривиальным.

SingleListNode<T> SortLinkedList<T>(SingleListNode<T> head) where T : IComparable<T>
{
    int blockSize = 1, blockCount;
    do
    {
        //Maintain two lists pointing to two blocks, left and right
        SingleListNode<T> left = head, right = head, tail = null;
        head = null; //Start a new list
        blockCount = 0;

        //Walk through entire list in blocks of size blockCount
        while (left != null)
        {
            blockCount++;

            //Advance right to start of next block, measure size of left list while doing so
            int leftSize = 0, rightSize = blockSize;
            for (;leftSize < blockSize && right != null; ++leftSize)
                right = right.Next;

            //Merge two list until their individual ends
            bool leftEmpty = leftSize == 0, rightEmpty = rightSize == 0 || right == null;
            while (!leftEmpty || !rightEmpty)
            {
                SingleListNode<T> smaller;
                //Using <= instead of < gives us sort stability
                if (rightEmpty || (!leftEmpty && left.Value.CompareTo(right.Value) <= 0))
                {
                    smaller = left; left = left.Next; --leftSize;
                    leftEmpty = leftSize == 0;
                }
                else
                {
                    smaller = right; right = right.Next; --rightSize;
                    rightEmpty = rightSize == 0 || right == null;
                }

                //Update new list
                if (tail != null)
                    tail.Next = smaller;
                else
                    head = smaller;
                tail = smaller;
            }

            //right now points to next block for left
            left = right;
        }

        //terminate new list, take care of case when input list is null
        if (tail != null)
            tail.Next = null;

        //Lg n iterations
        blockSize <<= 1;

    } while (blockCount > 1);

    return head;
}

Точки интереса

  • Не требуется специальной обработки для таких случаев, как нулевой список, список из 1 и т. Д. Эти случаи «просто работают».
  • Многие тексты «стандартных» алгоритмов имеют два цикла для перебора оставшихся элементов, чтобы справиться с тем случаем, когда один список короче другого. Приведенный выше код устраняет необходимость в нем.
  • Мы следим за стабильностью сортировки
  • Внутренний цикл while, который является горячей точкой, в среднем оценивает 3 выражения за итерацию, что, как мне кажется, является минимальным, что можно сделать.

Обновление: @ ideasman42 перевел приведенный выше код на C/C++ вместе с предложениями по исправлению комментариев и дополнительными улучшениями. Приведенный выше код теперь обновлен с ними.

Это весь фрагмент кода, который показывает, как мы можем создать список ссылок в java и отсортировать его с помощью сортировки слиянием. Я создаю узел в классе MergeNode, и есть еще один класс MergesortLinklist, в котором есть логика разделения и слияния.

class MergeNode {
    Object value;
    MergeNode next;

    MergeNode(Object val) {
        value = val;
        next = null;

    }

    MergeNode() {
        value = null;
        next = null;

    }

    public Object getValue() {
        return value;
    }

    public void setValue(Object value) {
        this.value = value;
    }

    public MergeNode getNext() {
        return next;
    }

    public void setNext(MergeNode next) {
        this.next = next;
    }

    @Override
    public String toString() {
        return "MergeNode [value=" + value + ", next=" + next + "]";
    }

}

public class MergesortLinkList {
    MergeNode head;
    static int totalnode;

    public MergeNode getHead() {
        return head;
    }

    public void setHead(MergeNode head) {
        this.head = head;
    }

    MergeNode add(int i) {
        // TODO Auto-generated method stub
        if (head == null) {
            head = new MergeNode(i);
            // System.out.println("head value is  "+head);
            return head;

        }
        MergeNode temp = head;

        while (temp.next != null) {
            temp = temp.next;
        }
        temp.next = new MergeNode(i);
        return head;

    }

    MergeNode mergesort(MergeNode nl1) {
        // TODO Auto-generated method stub

        if (nl1.next == null) {
            return nl1;
        }

        int counter = 0;

        MergeNode temp = nl1;

        while (temp != null) {
            counter++;
            temp = temp.next;

        }
        System.out.println("total nodes  " + counter);

        int middle = (counter - 1) / 2;

        temp = nl1;
        MergeNode left = nl1, right = nl1;
        int leftindex = 0, rightindex = 0;

        if (middle == leftindex) {
            right = left.next;
        }
        while (leftindex < middle) {

            leftindex++;
            left = left.next;
            right = left.next;
        }

        left.next = null;
        left = nl1;

        System.out.println(left.toString());
        System.out.println(right.toString());

        MergeNode p1 = mergesort(left);
        MergeNode p2 = mergesort(right);

        MergeNode node = merge(p1, p2);

        return node;

    }

    MergeNode merge(MergeNode p1, MergeNode p2) {
        // TODO Auto-generated method stub

        MergeNode L = p1;
        MergeNode R = p2;

        int Lcount = 0, Rcount = 0;

        MergeNode tempnode = null;

        while (L != null && R != null) {

            int val1 = (int) L.value;

            int val2 = (int) R.value;

            if (val1 > val2) {

                if (tempnode == null) {
                    tempnode = new MergeNode(val2);
                    R = R.next;
                } else {

                    MergeNode store = tempnode;

                    while (store.next != null) {
                        store = store.next;
                    }
                    store.next = new MergeNode(val2);

                    R = R.next;
                }

            } else {
                if (tempnode == null) {
                    tempnode = new MergeNode(val1);
                    L = L.next;
                } else {

                    MergeNode store = tempnode;

                    while (store.next != null) {
                        store = store.next;
                    }
                    store.next = new MergeNode(val1);

                    L = L.next;
                }

            }

        }

        MergeNode handle = tempnode;

        while (L != null) {

            while (handle.next != null) {

                handle = handle.next;

            }
            handle.next = L;

            L = null;

        }

        // Copy remaining elements of L[] if any
        while (R != null) {
            while (handle.next != null) {

                handle = handle.next;

            }
            handle.next = R;

            R = null;

        }

        System.out.println("----------------sorted value-----------");
        System.out.println(tempnode.toString());
        return tempnode;
    }

    public static void main(String[] args) {
        MergesortLinkList objsort = new MergesortLinkList();
        MergeNode n1 = objsort.add(9);
        MergeNode n2 = objsort.add(7);
        MergeNode n3 = objsort.add(6);
        MergeNode n4 = objsort.add(87);
        MergeNode n5 = objsort.add(16);
        MergeNode n6 = objsort.add(81);

        MergeNode n7 = objsort.add(21);
        MergeNode n8 = objsort.add(16);

        MergeNode n9 = objsort.add(99);
        MergeNode n10 = objsort.add(31);

        MergeNode val = objsort.mergesort(n1);

        System.out.println("===============sorted values=====================");
        while (val != null) {
            System.out.println(" value is  " + val.value);
            val = val.next;
        }
    }

}

Я не вижу здесь размещенных решений C++. Итак, вот оно. Надеюсь, это кому-то поможет.

class Solution {
public:
    ListNode *merge(ListNode *left, ListNode *right){
        ListNode *head = NULL, *temp = NULL;
        // Find which one is the head node for the merged list
        if(left->val <= right->val){
            head = left, temp = left;
            left = left->next;
        }
        else{
            head = right, temp = right;
            right = right->next;
        }
        while(left && right){
            if(left->val <= right->val){
                temp->next = left;
                temp = left;
                left = left->next;
            }
            else{
                temp->next = right;
                temp = right;
                right = right->next;
            }
        }
        // If some elements still left in the left or the right list
        if(left)
            temp->next = left;
        if(right)
            temp->next = right;
        return head;
    }

    ListNode* sortList(ListNode* head){
        if(!head || !head->next)
            return head;

        // Find the length of the list
        int length = 0;
        ListNode *temp = head;
        while(temp){
            length++;
            temp = temp->next;
        }
        // Reset temp
        temp = head;
        // Store half of it in left and the other half in right
        // Create two lists and sort them
        ListNode *left = temp, *prev = NULL;
        int i = 0, mid = length / 2;
        // Left list
        while(i < mid){
            prev = temp;
            temp = temp->next;
            i++;
        }
        // The end of the left list should point to NULL
        if(prev)
            prev->next = NULL;
        // Right list
        ListNode  *right = temp;
        // Sort left list
        ListNode *sortedLeft = sortList(left);
        // Sort right list
        ListNode *sortedRight = sortList(right);
        // Merge them
        ListNode *sortedList = merge(sortedLeft, sortedRight);
        return sortedList;
    }
};

Я решил протестировать здесь примеры, а также еще один подход, изначально написанный Джонатаном Каннингемом в Pop-11. Я закодировал все подходы на C# и провел сравнение с рядом списков разных размеров. Я сравнил подход Mono eglib от Raja R Harinath, код C# от Shital Shah, подход Java от Jayadev, рекурсивную и нерекурсивную версии Дэвида Гэмбла, первый код C от Эда Винна (он потерпел крах с моим образцом набора данных, Я не отлаживал) и версию Каннингема. Полный код здесь: https://gist.github.com/314e572808f29adb0e41.git .

Mono eglib основан на идее, аналогичной Cunningham, и имеет сопоставимую скорость, если только список уже не отсортирован, и в этом случае подход Cunningham намного быстрее (если он частично отсортирован, eglib немного быстрее). Код eglib использует фиксированную таблицу для хранения рекурсии сортировки слиянием, тогда как подход Каннингема работает с использованием возрастающих уровней рекурсии - поэтому он начинается без рекурсии, затем с 1-глубокой рекурсией, затем с 2-ступенчатой ​​рекурсией и т. Д., Согласно сколько шагов нужно для сортировки. Я считаю, что за кодом Каннингема немного легче следовать, и нет никаких догадок о том, насколько большой сделать таблицу рекурсии, поэтому он получил мой голос. Другие подходы, которые я пробовал с этой страницы, были в два или более раза медленнее.

Вот порт C# сортировки Pop-11:

/// <summary>
/// Sort a linked list in place. Returns the sorted list.
/// Originally by Jonathan Cunningham in Pop-11, May 1981.
/// Ported to C# by Jon Meyer.
/// </summary>
public class ListSorter<T> where T : IComparable<T> {
    SingleListNode<T> workNode = new SingleListNode<T>(default(T));
    SingleListNode<T> list;

    /// <summary>
    /// Sorts a linked list. Returns the sorted list.
    /// </summary>
    public SingleListNode<T> Sort(SingleListNode<T> head) {
        if (head == null) throw new NullReferenceException("head");
        list = head;

        var run = GetRun(); // get first run
        // As we progress, we increase the recursion depth. 
        var n = 1;
        while (list != null) {
            var run2 = GetSequence(n);
            run = Merge(run, run2);
            n++;
        }
        return run;
    }

    // Get the longest run of ordered elements from list.
    // The run is returned, and list is updated to point to the
    // first out-of-order element.
    SingleListNode<T> GetRun() {
        var run = list; // the return result is the original list
        var prevNode = list;
        var prevItem = list.Value;

        list = list.Next; // advance to the next item
        while (list != null) {
            var comp = prevItem.CompareTo(list.Value);
            if (comp > 0) {
                // reached end of sequence
                prevNode.Next = null;
                break;
            }
            prevItem = list.Value;
            prevNode = list;
            list = list.Next;
        }
        return run;
    }

    // Generates a sequence of Merge and GetRun() operations.
    // If n is 1, returns GetRun()
    // If n is 2, returns Merge(GetRun(), GetRun())
    // If n is 3, returns Merge(Merge(GetRun(), GetRun()),
    //                          Merge(GetRun(), GetRun()))
    // and so on.
    SingleListNode<T> GetSequence(int n) {
        if (n < 2) {
            return GetRun();
        } else {
            n--;
            var run1 = GetSequence(n);
            if (list == null) return run1;
            var run2 = GetSequence(n);
            return Merge(run1, run2);
        }
    }

    // Given two ordered lists this returns a list that is the
    // result of merging the two lists in-place (modifying the pairs
    // in list1 and list2).
    SingleListNode<T> Merge(SingleListNode<T> list1, SingleListNode<T> list2) {
        // we reuse a single work node to hold the result.
        // Simplifies the number of test cases in the code below.
        var prevNode = workNode;
        while (true) {
            if (list1.Value.CompareTo(list2.Value) <= 0) {
                // list1 goes first
                prevNode.Next = list1;
                prevNode = list1;
                if ((list1 = list1.Next) == null) {
                    // reached end of list1 - join list2 to prevNode
                    prevNode.Next = list2;
                    break;
                }
            } else {        // same but for list2
                prevNode.Next = list2;
                prevNode = list2;
                if ((list2 = list2.Next) == null) {
                    prevNode.Next = list1;
                    break;
                }
            }
        }

        // the result is in the back of the workNode
        return workNode.Next;
    }
}

Вот реализация Java сортировки слиянием в связанном списке:

  • Сложность времени: O (n.logn)
  • Сложность пространства: O (1) - реализация сортировки слиянием в связанном списке позволяет избежать затрат на вспомогательное хранилище O (n), обычно связанных с алгоритмом
class Solution
{
    public ListNode mergeSortList(ListNode head) 
    {
        if(head == null || head.next == null)
            return head;

        ListNode mid = getMid(head), second_head = mid.next; mid.next = null;

        return merge(mergeSortList(head), mergeSortList(second_head));
    }

    private ListNode merge(ListNode head1, ListNode head2)
    {
        ListNode result = new ListNode(0), current = result;

        while(head1 != null && head2 != null)
        {
            if(head1.val < head2.val)
            {
                current.next = head1;
                head1 = head1.next;
            }
            else
            {
                current.next = head2;
                head2 = head2.next;
            }
            current = current.next;
        }

        if(head1 != null) current.next = head1;
        if(head2 != null) current.next = head2;

        return result.next;
    }

    private ListNode getMid(ListNode head)
    {
        ListNode slow = head, fast = head.next;

        while(fast != null && fast.next != null)
        {
            slow = slow.next;
            fast = fast.next.next;
        }
        return slow;
    }
}

Протестированная рабочая C++ версия односвязного списка, основанная на ответе, получившем наибольшее количество голосов .

singlelinkedlist.h:

#pragma once
#include <stdexcept>
#include <iostream>
#include <initializer_list>
namespace ythlearn{
    template<typename T>
    class Linkedlist{
    public:
        class Node{
        public:
            Node* next;
            T elem;
        };
        Node head;
        int _size;
    public:
        Linkedlist(){
            head.next = nullptr;            
            _size = 0;
        }

        Linkedlist(std::initializer_list<T> init_list){
            head.next = nullptr;            
            _size = 0;
            for(auto s = init_list.begin(); s!=init_list.end(); s++){
                push_left(*s);
            }
        }

        int size(){
            return _size;
        }

        bool isEmpty(){
            return size() == 0;
        }

        bool isSorted(){
            Node* n_ptr = head.next;
            while(n_ptr->next != nullptr){
                if(n_ptr->elem > n_ptr->next->elem)
                    return false;
                n_ptr = n_ptr->next;
            }
            return true;
        }

        Linkedlist& push_left(T elem){
            Node* n = new Node;
            n->elem = elem;
            n->next = head.next;
            head.next = n;
            ++_size;
            return *this;
        }

        void print(){
                Node* loopPtr = head.next;
                while(loopPtr != nullptr){
                    std::cout << loopPtr->elem << " ";
                    loopPtr = loopPtr->next;
                }
                std::cout << std::endl;
        }

        void call_merge(){
            head.next = merge_sort(head.next);
        }

        Node* merge_sort(Node* n){
            if(n == nullptr || n->next == nullptr)
                return n;
            Node* middle = getMiddle(n);
            Node* left_head = n;
            Node* right_head = middle->next;
            middle->next = nullptr;
            return merge(merge_sort(left_head), merge_sort(right_head));
        }

        Node* getMiddle(Node* n){
            if(n == nullptr)
                return n;
            Node* slow, *fast;
            slow = fast = n;
            while(fast->next != nullptr && fast->next->next != nullptr){
                slow = slow->next;
                fast = fast->next->next;
            }
            return slow;
        }

        Node* merge(Node* a, Node* b){
            Node dummyHead;
            Node* current = &dummyHead;
            while(a != nullptr && b != nullptr){
                if(a->elem < b->elem){
                    current->next = a;
                    a = a->next;
                }else{
                    current->next = b;
                    b = b->next;
                }
                current = current->next;
            }
            current->next = (a == nullptr) ? b : a;
            return dummyHead.next;
        }

        Linkedlist(const Linkedlist&) = delete;
        Linkedlist& operator=(const Linkedlist&) const = delete;
        ~Linkedlist(){
            Node* node_to_delete;
            Node* ptr = head.next;
            while(ptr != nullptr){
                node_to_delete = ptr;
                ptr = ptr->next;
                delete node_to_delete;
            }

        }

    };
}

main.cpp:

#include <iostream>
#include <cassert>
#include "singlelinkedlist.h"
using namespace std;
using namespace ythlearn;

int main(){
    Linkedlist<int> l = {3,6,-5,222,495,-129,0};
    l.print();
    l.call_merge();
    l.print();
    assert(l.isSorted());
    return 0;
}

Простейшая реализация Java:

Сложность времени: O (nLogn) n = количество узлов. Каждая итерация по связанному списку удваивает размер отсортированных более мелких связанных списков. Например, после первой итерации связанный список будет отсортирован на две половины. После второй итерации связанный список будет отсортирован на четыре половины. Он будет продолжать сортировку до размера связанного списка. Это займет O (logn) удвоений размеров небольших связанных списков, чтобы достичь исходного размера связанного списка. N в nlogn присутствует, потому что каждая итерация связанного списка займет время, пропорциональное количеству узлов в исходном связанном списке.

class Node {
    int data;
    Node next;
    Node(int d) {
        data = d;
    }
}

class LinkedList {
    Node head;
    public Node mergesort(Node head) {
          if(head == null || head.next == null) return head;
          Node middle = middle(head), middle_next = middle.next;
          middle.next = null;
          Node left = mergesort(head), right = mergesort(middle_next), node = merge(left, right);
          return node;
    } 

    public Node merge(Node first, Node second) {
          Node node = null;
          if (first == null) return second;
          else if (second == null) return first;
          else if (first.data <= second.data) {
              node = first;
              node.next = merge(first.next, second);

          } else {
              node = second;
              node.next = merge(first, second.next);
          }
          return node;
    }

    public Node middle(Node head) {
          if (head == null) return head;
          Node second = head, first = head.next;
          while(first != null) {
              first = first.next;
              if (first != null) {
                 second = second.next;
                 first = first.next;
              }
          }
          return second;
    }

}

Эй, я знаю, что это немного запоздалый ответ, но получил быстрый и простой ответ.

Код написан на F #, но будет доступен на любом языке. Поскольку это необычный язык семейства машинного обучения, я дам несколько замечаний по улучшению читабельности. Вложение F # осуществляется путем табуляции. последняя строка кода в функции (вложенная часть) - это возвращаемое значение. (x, y) - это кортеж, x :: xs - это список из головы x и хвоста xs (где xs может быть пустым), |> взять результат последней строки конвейера как аргумент выражения справа от него (улучшение читаемости) и last (забавные аргументы -> какое-то выражение) являются лямбда-функцией.

// split the list into a singleton list
let split list = List.map (fun x -> [x]) lst

// takes to list and merge them into a sorted list
let sort lst1 lst2 =
   // nested function to hide accumulator
   let rec s acc pair =
       match pair with
       // empty list case, return the sorted list
       | [], [] -> List.rev acc
       | xs, [] | [], xs ->
          // one empty list case, 
          // append the rest of xs onto acc and return the sorted list
          List.fold (fun ys y -> y :: ys) acc xs
          |> List.rev
       // general case
       | x::xs, y::ys ->
          match x < y with
          | true -> // cons x onto the accumulator
              s (x::acc) (xs,y::ys)
          | _ ->
              // cons y onto the accumulator
              s (y::acc) (x::xs,ys)

    s [] (lst1, lst2)  

let msort lst =
  let rec merge acc lst =
      match lst with
      | [] ->
          match acc with
          | [] -> [] // empty list case
          | _ -> merge [] acc
      | x :: [] -> // single list case (x is a list)
         match acc with
         | [] -> x // since acc are empty there are only x left, hence x are the sorted list.
         | _ -> merge [] (x::acc) // still need merging.
       | x1 :: x2 :: xs ->
           // merge the lists x1 and x2 and add them to the acummulator. recursiv call
           merge (sort x1 x2 :: acc) xs

   // return part
   split list // expand to singleton list list
   |> merge [] // merge and sort recursively.

Важно отметить, что это полностью хвостовая рекурсия, поэтому нет возможности переполнения стека, и, сначала расширяя список до одноэлементного списка за один раз, мы уменьшаем постоянный коэффициент при наихудшей стоимости. Поскольку слияние работает со списком списка, мы можем рекурсивно объединять и сортировать внутренний список, пока не дойдем до точки исправления, где весь внутренний список сортируется в один список, а затем мы возвращаем этот список, следовательно, сворачивая из списка списка в список опять таки.

Вот решение, использующее язык программирования Swift .

//Main MergeSort Function
func mergeSort(head: Node?) -> Node? {
   guard let head = head else { return nil }
   guard let _ = head.next else { return head }

   let middle = getMiddle(head: head)
   let left = head
   let right = middle.next

   middle.next = nil

   return merge(left: mergeSort(head: left), right: mergeSort(head: right))
}

//Merge Function
func merge(left: Node?, right: Node?) -> Node? {

   guard let left = left, let right = right else { return nil}

   let dummyHead: Node = Node(value: 0)

   var current: Node? = dummyHead
   var currentLeft: Node? = left
   var currentRight: Node? = right

   while currentLeft != nil && currentRight != nil {
       if currentLeft!.value < currentRight!.value {
        current?.next = currentLeft
        currentLeft = currentLeft!.next
       } else {
        current?.next = currentRight
        currentRight = currentRight!.next
       }
       current = current?.next
   }


   if currentLeft != nil {
        current?.next = currentLeft
   }

   if currentRight != nil {
        current?.next = currentRight
   }

   return dummyHead.next!
}

А вот класс узла и метод getMiddle

class Node { 
    //Node Class which takes Integers as value
    var value: Int
    var next: Node?
    
    init(value: Int) {
        self.value = value
    }
}

func getMiddle(head: Node) -> Node {
    guard let nextNode = head.next else { return head }
    
    var slow: Node = head
    var fast: Node? = head
    
    while fast?.next?.next != nil {
        slow = slow.next!
        fast = fast!.next?.next
    }
    
    
    return slow
}

Один интересный способ - поддерживать стек и выполнять слияние только в том случае, если список в стеке имеет такое же количество элементов, а в противном случае - проталкивать список, пока не закончатся элементы во входящем списке, а затем объединить стек.

Самый простой - из Справочника алгоритмов Gonnet + Baeza Yates . Вы вызываете его с нужным количеством отсортированных элементов, которые рекурсивно делятся пополам, пока не будет получен запрос на список размером один, который затем вы просто снимаете с передней части исходного списка. Все они объединяются в полноценный отсортированный список.

[Обратите внимание, что классный метод, основанный на стеке, в первом посте называется «Сортировка онлайн-слияний», и он получает самое незначительное упоминание в упражнении в Knuth Vol 3]

Более простой / ясной реализацией может быть рекурсивная реализация, из которой время выполнения NLog (N) становится более ясным.

typedef struct _aList {
    struct _aList* next;
    struct _aList* prev; // Optional.
    // some data
} aList;

aList* merge_sort_list_recursive(aList *list,int (*compare)(aList *one,aList *two))
{
    // Trivial case.
    if (!list || !list->next)
        return list;

    aList *right = list,
          *temp  = list,
          *last  = list,
          *result = 0,
          *next   = 0,
          *tail   = 0;

    // Find halfway through the list (by running two pointers, one at twice the speed of the other).
    while (temp && temp->next)
    {
        last = right;
        right = right->next;
        temp = temp->next->next;
    }

    // Break the list in two. (prev pointers are broken here, but we fix later)
    last->next = 0;

    // Recurse on the two smaller lists:
    list = merge_sort_list_recursive(list, compare);
    right = merge_sort_list_recursive(right, compare);

    // Merge:
    while (list || right)
    {
        // Take from empty lists, or compare:
        if (!right) {
            next = list;
            list = list->next;
        } else if (!list) {
            next = right;
            right = right->next;
        } else if (compare(list, right) < 0) {
            next = list;
            list = list->next;
        } else {
            next = right;
            right = right->next;
        }
        if (!result) {
            result=next;
        } else {
            tail->next=next;
        }
        next->prev = tail;  // Optional.
        tail = next;
    }
    return result;
}

NB: это требует хранения журнала (N) для рекурсии. Производительность должна быть примерно сопоставима с другой стратегией, которую я опубликовал. Здесь есть потенциальная оптимизация, запустив цикл слияния while (list && right) и просто добавив оставшийся список (поскольку нас не волнует конец списков; достаточно знать, что они объединены).

В значительной степени основан на ОТЛИЧНОМ коде из: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

Немного подрезаны и прибраны:


typedef struct _aList {
    struct _aList* next;
    struct _aList* prev; // Optional.
       // some data
} aList;

aList *merge_sort_list(aList *list,int (*compare)(aList *one,aList *two))
{
    int listSize=1,numMerges,leftSize,rightSize;
    aList *tail,*left,*right,*next;
    if (!list || !list->next) return list;  // Trivial case

    do { // For each power of two<=list length
        numMerges=0,left=list;tail=list=0; // Start at the start

        while (left) { // Do this list_len/listSize times:
            numMerges++,right=left,leftSize=0,rightSize=listSize;
            // Cut list into two halves (but don't overrun)
            while (right && leftSize<listSize) leftSize++,right=right->next;
            // Run through the lists appending onto what we have so far.
            while (leftSize>0 || (rightSize>0 && right)) {
                // Left empty, take right OR Right empty, take left, OR compare.
                if (!leftSize)                  {next=right;right=right->next;rightSize--;}
                else if (!rightSize || !right)  {next=left;left=left->next;leftSize--;}
                else if (compare(left,right)<0) {next=left;left=left->next;leftSize--;}
                else                            {next=right;right=right->next;rightSize--;}
                // Update pointers to keep track of where we are:
                if (tail) tail->next=next;  else list=next;
                // Sort prev pointer
                next->prev=tail; // Optional.
                tail=next;          
            }
            // Right is now AFTER the list we just sorted, so start the next sort there.
            left=right;
        }
        // Terminate the list, double the list-sort size.
        tail->next=0,listSize<<=1;
    } while (numMerges>1); // If we only did one merge, then we just sorted the whole list.
    return list;
}

NB: это гарантировано O (NLog (N)) и использует O (1) ресурсов (без рекурсии, без стека, ничего).

public int[] msort(int[] a) {
    if (a.Length > 1) {
        int min = a.Length / 2;
        int max = min;

        int[] b = new int[min];
        int[] c = new int[max]; // dividing main array into two half arrays
        for (int i = 0; i < min; i++) {
            b[i] = a[i];
        }

        for (int i = min; i < min + max; i++) {
            c[i - min] = a[i];
        }

        b = msort(b);
        c = msort(c);

        int x = 0;
        int y = 0;
        int z = 0;

        while (b.Length != y && c.Length != z) {
            if (b[y] < c[z]) {
                a[x] = b[y];
                //r--
                x++;
                y++;
            } else {
                a[x] = c[z];
                x++;
                z++;
            }
        }

        while (b.Length != y) {
            a[x] = b[y];
            x++;
            y++;
        }

        while (c.Length != z) {
            a[x] = c[z];
            x++;
            z++;
        }
    }

    return a;
}

Другой пример нерекурсивной сортировки слиянием для связанных списков, где функции не являются частью класса. В этом примере кода и HP / Microsoft std::list::sort используется один и тот же базовый алгоритм. Нерекурсивная сортировка слиянием снизу вверх, в которой используется небольшой (от 26 до 32) массив указателей на первые узлы списка, где array[i] либо 0, либо указывает на список размером 2 в степени i. В моей системе Intel 2600K 3,4 ГГц он может отсортировать 4 миллиона узлов с 32-битными целыми числами без знака в качестве данных примерно за 1 секунду.

NODE * MergeLists(NODE *, NODE *); /* prototype */

/* sort a list using array of pointers to list       */
/* aList[i] == NULL or ptr to list with 2^i nodes    */
 
#define NUMLISTS 32             /* number of lists */
NODE * SortList(NODE *pList)
{
NODE * aList[NUMLISTS];         /* array of lists */
NODE * pNode;
NODE * pNext;
int i;
    if(pList == NULL)           /* check for empty list */
        return NULL;
    for(i = 0; i < NUMLISTS; i++)   /* init array */
        aList[i] = NULL;
    pNode = pList;              /* merge nodes into array */
    while(pNode != NULL){
        pNext = pNode->next;
        pNode->next = NULL;
        for(i = 0; (i < NUMLISTS) && (aList[i] != NULL); i++){
            pNode = MergeLists(aList[i], pNode);
            aList[i] = NULL;
        }
        if(i == NUMLISTS)   /* don't go beyond end of array */
            i--;
        aList[i] = pNode;
        pNode = pNext;
    }
    pNode = NULL;           /* merge array into one list */
    for(i = 0; i < NUMLISTS; i++)
        pNode = MergeLists(aList[i], pNode);
    return pNode;
}

/* merge two already sorted lists                    */
/* compare uses pSrc2 < pSrc1 to follow the STL rule */
/*   of only using < and not <=                      */
NODE * MergeLists(NODE *pSrc1, NODE *pSrc2)
{
NODE *pDst = NULL;          /* destination head ptr */
NODE **ppDst = &pDst;       /* ptr to head or prev->next */
    if(pSrc1 == NULL)
        return pSrc2;
    if(pSrc2 == NULL)
        return pSrc1;
    while(1){
        if(pSrc2->data < pSrc1->data){  /* if src2 < src1 */
            *ppDst = pSrc2;
            pSrc2 = *(ppDst = &(pSrc2->next));
            if(pSrc2 == NULL){
                *ppDst = pSrc1;
                break;
            }
        } else {                        /* src1 <= src2 */
            *ppDst = pSrc1;
            pSrc1 = *(ppDst = &(pSrc1->next));
            if(pSrc1 == NULL){
                *ppDst = pSrc2;
                break;
            }
        }
    }
    return pDst;
}

Visual Studio 2015 изменена std::list::sort на итераторы, а не на списки, а также на сортировку слиянием сверху вниз, что требует дополнительных затрат на сканирование. Первоначально я предполагал, что переключение в режим сверху вниз необходимо для работы с итераторами, но когда его снова спросили об этом, я исследовал это и определил, что переключение на более медленный метод сверху вниз не требуется, а переход снизу вверх может быть реализован с использованием та же логика на основе итератора. Ответ в этой ссылке объясняет это и предоставляет автономный пример, а также замену VS2019 std::list::sort() в "списке" включаемого файла.

`std::list <> :: sort ()` - почему внезапный переход на стратегию сверху вниз?